Content AI is changing the future of chat interfaces, offering real-time responses using large language models (LLMs). In this full tutorial, you’ll build a production-ready AI chatbot using:
- Mistral 7B – fast, open-source LLM
- LangChain – chaining logic and prompts
- Pinecone – vector DB for document search
- FastAPI – backend API
- React + Tailwind – frontend UI
This chatbot uses RAG (Retrieval-Augmented Generation), bringing in your data + AI power 💡.
🔍 What is Content AI?
Content AI combines knowledge retrieval with AI-generated content. Instead of guessing answers, it finds the right context (via Pinecone) and then asks the AI to explain it in a human-like way.
- ✅ Accurate, data-driven answers
- ✅ Self-hostable and secure
- ✅ Ideal for support bots, assistants, and dashboards
📦 Project Stack Overview
- Frontend: React + Tailwind
- Backend: FastAPI (Python)
- LLM: Mistral 7B or similar
- RAG: Pinecone (vector DB)
⚙️ Step 1: Setup Your Project
mkdir content-ai-chatbot
cd content-ai-chatbot
🐍 Step 2: Backend (FastAPI + Mistral + LangChain)
Create a virtual environment and install dependencies:
python -m venv venv
source venv/bin/activate
pip install fastapi uvicorn transformers langchain pinecone-client sentence-transformers
Load the Mistral 7B model:
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from langchain import HuggingFacePipeline
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
llm = HuggingFacePipeline(pipeline=pipe)
📚 Step 3: Add Pinecone for RAG
import pinecone
from langchain.vectorstores import Pinecone
from langchain.embeddings import SentenceTransformerEmbeddings
pinecone.init(api_key="YOUR_KEY", environment="gcp-starter")
index = pinecone.Index("chatbot-index")
embed = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
vectorstore = Pinecone(index, embed.embed_query, "text")
def retrieve_context(query):
docs = vectorstore.similarity_search(query, k=3)
return "\n".join(doc.page_content for doc in docs)
🚀 Step 4: FastAPI Chat Endpoint
from fastapi import FastAPI
from pydantic import BaseModel
from model import llm
from rag import retrieve_context
app = FastAPI()
class ChatRequest(BaseModel):
message: str
@app.post("/chat")
def chat(req: ChatRequest):
context = retrieve_context(req.message)
prompt = f"Context:\\n{context}\\n\\nUser: {req.message}\\nBot:"
response = llm(prompt)
return {"response": response.generations[0].text.strip()}
💻 Step 5: Frontend with React + Tailwind
Use Tailwind CSS and create a basic chat interface using Axios:
import { useState } from "react";
import axios from "axios";
export default function Chat() {
const [messages, setMessages] = useState([]);
const [input, setInput] = useState("");
const send = async () => {
const res = await axios.post("http://localhost:8000/chat", { message: input });
setMessages([...messages, { from: "user", text: input }, { from: "bot", text: res.data.response }]);
setInput("");
};
return (
<div>
{messages.map((m, i) => (
<p key={i}><strong>{m.from}:</strong> {m.text}</p>
))}
<input value={input} onChange={e => setInput(e.target.value)} />
<button onClick={send}>Send</button>
</div>
);
}
📦 Step 6: Docker & Deployment
# Dockerfile
FROM python:3.10
WORKDIR /app
COPY . .
RUN pip install -r requirements.txt
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"]
Deploy backend to a VPS or use Fly.io or Render. Host frontend on Vercel/Netlify.